
Copyright © 2004 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for commercial advantage and that copies bear this notice and the full citation on the

first page. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on

servers, or to redistribute to lists, requires prior specific permission and/or a fee.

Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail

permissions@acm.org.

© 2004 ACM 1-58113-883-0/04/0006 $5.00

Animating Real-time Realistic Movements in Small Plants

Jason C. Wong∗

The University of Western Australia
Amitava Datta†

The University of Western Australia

Abstract

Much of the research involved in computer graphics is focused on
creating realistic images and animations that mimic the world we
see around us, as well as creating believable environments not from
this world. Techniques for animating realistic water, smoke, fire,
fog, and other natural phenomena have been extensively explored.
It is only recently that powerful computer hardware has become
available to achieve these realistic animations.

Compared with other natural phenomena, animations of vege-
tation and foliage are relatively undeveloped. There are many in-
stances where animations of vegetation and foliage are used in non
real-time applications such as special effects in movies. Foliage in
real-time applications on the other hand have usually been limited
to simple textures and other techniques that do not represent realis-
tic movements at all.

We propose a method for rendering and animating small plants
in real-time and in a realistic manner. These real-time animations
will be suitable for many real-time applications such as games and
realistic interactive virtual environments.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling—Physically based
modeling

Keywords: real-time, animations, modeling, small plants, foliage

1 Introduction

Throughout the history of computer graphics, a recurring goal of
scientists and artists alike is to reach the point where graphics and
reality become indistinguishable. For artists and game program-
mers, the realism of graphics can often determine the immersive-
ness of a program. For scientists, the realism is needed to ensure the
accuracy of simulations and predictions of object behaviour. There
are many other reasons for striving for realistic graphics and the
area of plant and vegetation modeling is no different.

There has been a substantial amount of work on modeling plants.
There are methods that focus on the realism of the plant models
and some that concentrate on the animations of such plant models.
Prusinkiewicz and others have developed sophisticated algorithms
to generate botanically accurate plant models [Prusinkiewicz et al.
1988; Prusinkiewicz et al. 1993; Prusinkiewicz and Mndermann

∗e-mail: jasonw@csse.uwa.edu.au
†e-mail: datta@csse.uwa.edu.au

2001; Noser et al. 2001; Power et al. 1999; Weber and Penn 1995].
On the other hand Deussen et al. and Sakaguchi and Ohya de-
veloped techniques to animate complex landscapes and interactive
environments [Deussen et al. 2002; Sakaguchi and Ohya 1999].

These generated plant models are usually computationally ex-
pensive to animate. To counteract this, optimizations (such as “level
of detail” or LOD in the work by Deussen et al. [2002]) are needed
to bring animations into framerates acceptable to be classified as
real-time. Because of the complexity of the models and the intri-
cacy in moving them, realistic animations of foliage are largely re-
stricted to non real-time applications. These animations of foliage
are quite widely used in special effects in modern feature films. Ex-
amples include the “Lord of the Rings” trilogy where the creation
of the Ent characters is aided by computer generated and animated
foliage [Aitken and Preston 2003].

There have been attempts in creating interactive virtual environ-
ments such as works by Guerraz et al. [2003] and Sakaguchi and
Ohya [1999]. Guerraz et al. concentrates mainly on using LOD in
rendering and animating a field of grass using a texel based mod-
eling technique. Their work involves representing blades of grass
in close proximity to the camera by billboarding techniques. Grass
that is further away are represented by other texture based tech-
niques. This method produces good results for large fields of grass,
but it is not very well suited for extreme close ups.

Sakaguchi’s work on the other hand involves gathering 3D vol-
umetric data on real trees to create a realistic model. They then
discuss their approach in animating the tree model. They propose a
method of segmenting the branches and calculating the rotation and
translation caused by external forces.

The algorithms used by Sakaguchi to calculate the branch move-
ments are based on complex physics such as moments of inertia,
axial damping, and back propagated forces. These consequently
contribute to the intensive computations needed. The tree models
used were also simplified by using simple polygons to represented
leaves. They assume that there is no need to simulate movements
of individual leaves for large tree models.

Since there is currently no efficient method to render small plants
where the leaves are also significantly affected by external forces,
we propose a method to render and animate small soft plants. Be-
sides the branches, we also segment the leaves, which allows the
leaves to move realistically as well. We also propose a versatile al-
gorithm that would be suitable to model the movements of a large
range of plant models from broad leaf plants to long thin wheat or
grass.

2 Our Approach

In calculating the rotation and translation of the stems and leaves,
we propose a simple algorithm that takes into account physically
based forces to determine the overall position of the whole plant.
In particular, we recognise and implement the forces of gravity and
wind which are the main factors in determining the resulting shape
and behaviour of the plant.

We do not model the true physics of the movements, but rather
opt for a method that approximates the plant movements. We intend
for this animation method to be extended to a large number of plant
models in order to create a whole landscape of vegetation. We also

182

intend for this method to be suitable for real-time applications and
still provide a visually realistic representation of vegetation.

2.1 Model Segments

Our approach is based on the concept of representing a leaf or
stem model by a series of thin strip segments. Each of these seg-
ments is connected to its adjacent segments and are of equal length.
An example of the segmentation of the models is shown in Fig-
ure 1. These segments act similarly to the particle systems used
in modeling cloth [Choi and Ko 2002] and in modeling snakes and
worms [Miller 1988].

Figure 1: A sample segmentation of the stem and leaf models. Note
that the segmentation is dynamically generated and is easily config-
urable.

During segmentation the initial models of both the stem and
leaves remain unchanged, but each vertex in the models is tagged to
a particular segment. When the segment is moved, the vertex also
moves. In this way, the connected segments act as an animation
skeleton for the model.

Each of the models of stems or leaves is segmented during run-
time. This dynamic generation of the segments provides the option
to easily alter the number of segments which will determine the
detail of possible movement. The more segments that are used to
represent a model the finer the movements that can be achieved.

2.2 Rigidity

To provide a robust and flexible technique to animate realistic plant
movements, it is necessary to include a variable that can ultimately
determine the behaviour of the plant. We implement this feature
through the notion of rigidity.

We model plants with two major components, namely the stem
of the plant and the leaves. Both the stem and the leaves have rigid-
ity parameters. Since stems are more rigid than leaves, it is intuitive
that the stem rigidity is higher than the leaf rigidity. This simply
means that it requires more force to affect the stem than it does for
the leaves.

Each segment has its own rigidity value. This allows the rigidity
to vary throughout a leaf or stem. It is also intuitive that the rigidity
of both leaves and stems is decreased along the length similar to the
concept of cantilevers [Weisstein 2003]. The further the distance of
a segment from the branch or root, the lower the rigidity.

It is the rigidity parameter that determines the effectiveness of an
external force acting on the leaf/stem. In the case of the leaf, the
rigidity term is used in determining how much roll, pitch, or yaw
rotations are applied to the leaf (see Section 3.1).

The rigidity of a leaf or stem is composed of three values corre-
sponding to the rigidity in the x, y, and z directions. Each of these
values determine the effective proportion of the force acting on the
leaf or stem. For example, a stem with a high rigidity in the x di-
rection and low rigidity in the y direction will resist a wind force
blowing in the x direction more than airflow blowing in the y direc-
tion.

Therefore, by varying the value of the rigidity, it is possible to
control the general behaviour of the plant. Hence, rigidity makes it
possible to model different types of plants. Plants such as shrubs
will have a high rigidity since they are rigid and strong, whilst
smaller plants like sprouts and long thin plants like wheat will have
a very low rigidity, lending themselves to be significantly affected
by the wind and gravity.

2.3 Leaf Shape Due to Gravity

Given that rigidity varies throughout the leaf, the force of gravity
has interesting effects on the leaf’s shape. We make the assump-
tion that the gravity force on each of the segments remains constant
since the segments are roughly the same size.

Since the rigidity already decreases along the length of the leaf,
there is no need for increasing the gravity force along the leaf that
usually occurs with the accumulative weight of the segments. In
this sense, the rigidity also takes into account the increasing weight
along the leaf, causing the leaf to ‘droop’.

Intuitively, the rigidity within the leaf is highest when the seg-
ments are close to the stem, and lowest when the segments are fur-
therest away from the stem. The decrease in the rigidity occurs due
to the slowly accumulating weight of the leaf. That is, the further
away from the stem, the more weight it has to hold up. Hence, only
a small amount of force is needed to move segments that are far
from the stem.

With the decreasing rigidity of the leaf, the rotation due to grav-
ity will increase with each segment. Therefore, with a constant
gravity force, the shape of the leaf can be solely determined by the
rigidity. In other words, the function of change in the rigidity will
ultimately determine the shape of the leaf. This is extremely useful
for modeling the behaviour of different species of plant leaves by
simply changing the rigidity. An example of the leaf shape being
defined by the rigidity and gravity is shown in Figure 2.

Figure 2: The effect of constant gravity over the segments with
varying rigidity. The original leaf shape also shows the original ori-
entation of the leaf. The new leaf shape shows the effect of applying
gravity. The rigidity follows the function of 1

distance .

183

3 Rotating Segments

We found that movements of the leaf and stem can be suitably
achieved through a series of rotations on the model segments. There
is no displacement explicitly defined since the rotations in the con-
nected segments will produce the necessary displacement. There-
fore, through inspiration from the movement management used by
Lowe et al. in animating a 3D human avatar [Lowe et al. 2002],
the segments were manipulated purely through rotations. An ex-
ample of how rotating the segments can cause overall displacement
is shown in Figure 3.

Y

X

Z

Figure 3: The effect of progressively rotating each of the segments
leading to overall displacement. It is through this concept that the
leaf and stem movements are modeled.

We observed that leaves in nature are governed by rotations in
the x, y, and z directions which translate into the yaw, pitch, and
roll rotations on the leaves respectively. The rotations of roll, pitch,
and yaw are shown in Figure 4.

Quaternions were used to represent these rotations to prevent
Gimbal lock that can occur in using Euler Angles [Ramamoorthi
and Barr 1997]. Quaternions are considered an extension of com-
plex numbers and can be used to represent rotations in three dimen-
sional space [Weisstein 1999]. Quaternions contain a three dimen-
sional rotational axis and a rotational angle. Note that the rotation
axis used in these quaternions do not correspond to the directions.
For example, pitch is a rotation in the y direction, but it is achieved
through a rotational axis in the x direction.

Figure 4: The possible rotations in a leaf. The yaw of the leaf is in
the x direction. The pitch of the leaf is in the y direction. The roll
of the leaf along the z direction.

The calculation of rotations and the application of these rota-
tions will be discussed in detail only in the case of leaf segments,
as the process is almost identical in the case of rotating stem seg-
ments. However, roll rotations do not easily occur on the stem, so
the calculation of roll rotations is not necessary in the case of stem
segments.

3.1 Calculating the Rotations

The amount of rotations in any of the three dimensional directions
on a leaf is determined by several main factors:

• The rigidity of the leaf,

• The magnitude of the wind,

• The direction of the wind, and

• The length of the leaf segments.

Firstly, the effect of the wind force is hindered by the rigidity of
the leaf. However, it is also important to note that the current ori-
entation of a particular segment will determine the effective wind
direction for that segment. This consequently leads to each seg-
ment requiring to store information of the effective wind as it will
vary from segment to segment. The direction and magnitude of the
effective wind force is governed by Algorithm 1.

Algorithm 1 Calculate Effective Wind Components

Variables
segmentTransMat = The transformation matrix of the segment
orientation.
windDirect = The global wind direction.
effectWindDirect = The effective wind direction.
effectWindMag = The effective wind magnitude.

for each segment do
segmentTransMat = convert(segmentOrientation)
effectWindDirect = transform(windDirect, segmentTransMat)
effectWindMag = |e f f ectWindDirect|

lea f Rigidity
end for

Once the effective wind direction and magnitude is calculated, it
is then possible to determine the effective rotations on the segment
caused by the wind. The rotations are calculated in two stages. The
first stage is to calculate the pitch and yaw rotations. The second
stage is to calculate the roll rotation. Both stages involve calculating
rotations for each of the segments in the leaf.

Note that all the rotations are calculated on the segments’ local
coordinate frames. Each of the segments is transformed so that
the origin of the segment (which is at the bottom of the segment)
matches the origin of the local coordinate frame. This means that
the point of rotation is at the origin of each segment.

3.1.1 Pitch and Yaw Rotations

To calculate the pitch and yaw rotations, the target axis of the seg-
ment is set to lie along the length of the segment. The purpose
of the target axis is to model the effective point of contact of the
wind which is assumed to be the middle of the segment (shown in
Figure 5). Hence the target axis length becomes dependent on the
segment length. Since the target axis is along the length segment (z
direction), the segment can then be rotated in the x and y directions,
ie, yaw and pitch rotations.

The pitch and yaw rotations are calculated from the target axis
and the effective wind direction and magnitude, or effective wind
vector. The resultant of the sum of these two vectors represents
the new direction of the target axis due to the wind as shown in
Figure 6. In order to use this new direction, the quaternion that
represents the rotation from the old to the new target axis is needed.
The rotation axis and angle required for this quaternion is calculated
using Algorithm 2.

184

Figure 5: The initial orientation of the target axis during the cal-
culation for the pitch and yaw rotations. Note that the target axis
extends from the origin to the centre of the leaf segment.

Rotated Target Axis

Inital Target Axis

Rotational Axis

ρ

Wind Vector

Figure 6: The rotation of the target axis due to the effective wind
vector. The rotation angle ρ is calculated by the dot product of
the initial and rotated target axes. The rotational axis is calculated
through the cross product of the initial target axis and the wind
vector.

With the rotational axis and angle ρ , the appropriate quaternion
for representing the rotation is obtained for each segment. This
rotation includes the components of both pitch and yaw.

3.1.2 Roll Rotations

The second stage of calculating the rotations of the segments in-
volves dealing with roll rotations. It is found that the natural re-
sponse of a leaf in nature is to try to align the surface normal of the
leaf to directly oppose the wind direction. In other words, the leaf
will roll so that it has the largest surface area facing the wind. This
can be explained by the leaf’s tendency to bend along the direction
of the wind. Consequently, the leaf can bend the most when the
largest surface area is facing the wind.

In roll rotations of the leaf segments, the rotational axis lies along

Algorithm 2 Calculate Pitch & Yaw

Calculate Rotational Axis and Angle
rotataionAxis = crossProduct(targetAxis, effectiveWind)
Normalise(rotationAxis)
ρ = arccos dotProduct(targetAxis,(rotatedTargetAxis))

(|targetAxis|∗|rotatedTargetAxis|)

the length of the segment. Therefore, to use the previous target axis
orientation as for the pitch and yaw rotations would cause ambigu-
ity (since the axes are parallel). Hence to avoid this problem, the
target axis for calculating the roll rotations is set to be parallel to
the normal of the leaf segment.

Note that since the leaf turns ‘towards’ the wind, the target axis is
highly dependent on the wind direction. The target axis is either set
to the positive or negative surface normal of the segment. To emu-
late the effect of the segment turning into the wind, the target axis is
set to positive if the wind direction has a positive y component and
to negative if the wind direction has a negative y component (shown
in Figure 7).

�
�
�
�
�
�
�
�
�
�
�
�
�
�

���������
���������
���������
���������
���������
���������
���������
���������

�������
�������
�������
�������
�������
�������
�������
�������

Y
Z

X

Initial

Axes
Target

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

ρ

ρ

Rotated Target Axis

Leaf Segment

Wind Vectors

Figure 7: The rotations of the target axis due to the effective wind
vector. Note that there are two sets of target axes. The appropriate
one is chosen based on the y component of the wind vector. The
rotations axis which is not shown is in the z direction and the angle
of rotation ρ is calculated using the dot product of the initial target
axis and wind vector.

Since we only need to deal with roll rotations at this stage, the
z component (which causes pitch rotations) of the wind direction
is removed. The roll rotations are then calculated via Algorithm 3,
which is similar to the yaw and pitch calculations.

Algorithm 3 Calculate Roll

Set Wind Parameters
Set z parameter of effectiveWind to 0

Set the Target Axis
if effectiveWind.y > 0 then

targetAxis = segmentNormal
else

targetAxis = -segmentNormal
end if

Calculate Rotational Axis and Angle
rotationAxis = crossProduct(targetAxis, effectiveWind)
Normalise(rotationAxis)
ρ = arccos dotProduct(targetAxis,(rotatedTargetAxis))

|targetAxis|∗|rotatedTargetAxis|

Once again, with the rotational axis and angle ρ , it is then pos-
sible to represent the roll rotation of each segment by these quater-
nions.

3.1.3 Combining Pitch, Yaw, Roll Rotations

With the two quaternions calculated previously (one for pitch and
yaw, and the other for roll), it is then a simple matter of multiplying

185

them to combine the rotations. The resultant quaternion will then
contain one rotational axis and angle that is equivalent of the three
different components of pitch, yaw, and roll rotations combined.

3.2 Applying the Rotations

After the process of calculating the rotations for all the segments,
each segment should now contain one quaternion that represents
the combined rotations of pitch, yaw, and roll. This quaternion is
then converted to a transformation matrix that is used to rotate each
of the tagged vertices of the leaf model belonging to that particu-
lar segment. This causes appropriate vertices in the model to be
transformed.

Since each segment is rotated in a local coordinate frame, each
segment will also need to keep track of the collective rotations of
all previous segments. This is done by a tracker transformation ma-
trix that accumulates all of the previous rotations. Effectively, this
tracker matrix is used to transform the previously local coordinates
of the segments to global coordinates of the leaf.

Note that this tracker transformation matrix is also used to trans-
form the global wind vector to be correctly aligned to the local seg-
ment coordinate frame. The whole process of converting the wind
vector to local coordinates and how it is used in rotating the segment
is illustrated in Figure 8.

Tracker
Matrix

Rotation
by

Wind

Tracker
Matrix

Global CoordinatesLocal Coordinates

Apply

Initital
Orientation

Final
Orientation

Intermediate
Orientation

Wind − Global

Wind − Local
Segment

Segment

Segment

Figure 8: The procedure of rotating a segment. Firstly, the global
wind vector is transformed into local coordinates to match the ini-
tial segment coordinate frame. This is achieved through the use of
the Tracker Matrix. The segment is then rotated by the local wind
vector through the Rotation by Wind matrix to reach the intermedi-
ate segment orientation. The segment is then finally transformed to
global coordinates.

4 Restoration and Oscillations Forces

When a plant stem or leaf is bent by an external force, it stores po-
tential energy. When the external force is reduced, or completely
removed, the stem or leaf will ‘spring’ back into its original shape.
This behaviour is modeled through the concept of a restoration
force. Since the stem and leaves are treated in the same way, only
the stem will be mentioned with leaves implied.

Once a stem is moving towards its original shape, the amount
of kinetic force will increase and drive the stem to go beyond its
original shape. It then reverses direction in an attempt to return
to the original shape. This may happen several times, where the
stem overshoots its goal and hence causes an oscillation effect. This
behaviour is modeled by the inclusion of an oscillation force.

Both the restoration and oscillation forces are modeled to pro-
duce movement that mimics the movements of plants in nature. To

implement this behaviour, we found it beneficial to define different
modes for the stem. During the initial restoration of the stem to its
original shape, the stem is in restoration mode (see Section 4.1).
Once it reaches its original shape, the stem switches to oscillation
mode (see Section 4.2).

Each of the stem segments has its own restoration and oscilla-
tion modes. This allows for the possibility that one segment can be
in restoration mode while another segment is in oscillation mode.
Also, both the restoration and oscillation forces are dealt with in-
dependently in each of the three dimensions. This allows for the
possibility that a stem can oscillate in different directions at differ-
ent times.

4.1 Restoration Mode

The restoration mode is activated when an external force (such as
wind) is cut off, leaving the plant suddenly without external forces
acting upon it. Perhaps a suitable scenario is a window that is sud-
denly closed, stopping the wind.

Without an external force bending the plant, a restoration force
acts to release the stored potential energy. The magnitude of this
restoration force is based on two major factors:

1. The rigidity of the stem, and

2. The magnitude of the previous wind force.

Both of these factors are intrinsic to how the restoration force
will act. Firstly, the initial magnitude of the restoration force will
be comparatively small and is based on the magnitude of the previ-
ous wind force. As time progresses, the restoration force increases
linearly based on the rigidity of the stem as the potential energy is
converted into kinetic energy.

Therefore, a stem that was deformed by a large external force
will have a larger starting magnitude for the restoration force. Also,
a stem with a high rigidity will have a restoration force that in-
creases more rapidly than the restoration force of a stem with low
rigidity.

The direction of the restoration force is perpendicular to the stem
segments. This will allow the stem to return to its original shape in
the most efficient way.

4.2 Oscillation Mode

At the point the stem reaches the position of its original shape, the
stem will shift into oscillation mode. The oscillation force in this
mode will cause the stem to oscillate past its original shape several
times. Similarly to the restoration, the oscillation force is also based
on two factors:

1. The rigidity of the stem, and

2. The magnitude of the last restoration force just before switch-
ing to oscillation mode.

The magnitude of the last restoration force will determine the
magnitude of the oscillations. The greater the restoration force, the
bigger the oscillations. The rigidity on the other hand is integral in
determining the behaviour of the oscillations since the rigidity will
determine the speed and the total time of the oscillations.

The function chosen to model the oscillations is based on a
dampened cosine function(shown in Figure 9). The oscillation
force follows the form:

oF = (rF − t ∗ rF/totalTime)∗ cos(t/speed)

186

Where:
oF = oscillation force.
rF = restoration force.
t = time of animation.
totalTime = total time of the oscillations, based on rigidity.
speed = speed of oscillation, based on rigidity.

Figure 9: The dampened cosine function that is used to model the
oscillations of the stem/leaf. The initial magnitude is determined
by the restoration force. The speed and total time of the oscillations
are based on rigidity.

5 Results

Throughout the testing of our approach to animate non-rigid plants,
we used a small plant model with 20 leaves that were randomly
arranged at runtime. The stem and each of the leaf models were
segmented into 20 segments. The plant model was created using
the Anim8or modeling program [Glanville 2003] and was textured
with the help of the UVmapper program [Cox 2003]. The model
(shown in Figure 10) consists of:

• 20 leaf models each with approximately 200 vertices,

• a stem model with approximately 500 vertices, and

• a pot model with approximately 450 vertices.

Figure 10: The plant model used during the testing of our approach.
There are no external forces other than gravity at this point.

The machine which was used during testing has the following
specification:

• Linux RedHat 8,

• Pentium IV - 2 GHz,

• 512MB DDR RAM, and

• Geforce 4 Ti4200 128MB.

5.1 Movements

To test the movement of the plant as a whole, we included user
controlled wind forces. The wind can be increased in any of the
three dimensions. Examples of wind blowing in the x direction in
shown in Figure 11. The effects of a more complex wind direction
is shown in Figure 12, where the y component is varied. Note that it
requires a lot less change in magnitude in the y component to cause
a large effect. This is attributed to the plant model’s low rigidity in
the y direction.

Figure 11: The effects of varying the x component of the wind from
0.5 to 1.2.

Figure 12: The effects of varying the y component of the wind from
0.3 to 0.6. Note that the x and z are kept constant.

To see an animated example of the restoration and oscillation
modes, please refer to

187

http://www.csse.uwa.edu.au/~jasonw/videos/oscil.mpg.
Screenshots of the animation are shown in Figure 13.

5.1.1 Randomised Wind

To further investigate the movements of the plant model, we intro-
duced a randomised wind. This randomised wind is intended to
mimic the inconsistent and unpredictable nature of wind.

Since the wind is defined by a three dimensional vector, the ran-
domisation is achieved by simply randomly increasing or decreas-
ing the wind vector components. To prevent large changes, the
randomised wind only increments/decrements components by very
small steps.

To see an animated example of the effect of a randomised wind,
please refer to
http://www.csse.uwa.edu.au/~jasonw/videos/randW.mpg.
Screenshots of the animation are shown in Figures 14.

5.2 Framerate

The framerate of the animation was found to run stably at approx-
imately 34 frames per second. This framerate is consistent regard-
less of the magnitude or direction of wind applied to the model.

We conducted several experiments on another computer with a
similar environment and CPU power. The only major difference is
that it used an older Geforce 2 than the Geforce 4 used in the main
testing machine. We found that the framerate was still around 32
frames per second. This confirmed the reliance on the CPU and
not on the graphics card, as we do not yet take advantage of any
hardware acceleration.

6 Future Work

In the current implementation, all the vertices in the models are
transformed by the CPU. Optimizing this process will be essential
in extending this method to multiple plant models. Possible op-
timizations include representing each segment by a bounding box
and then using extrapolation techniques to fill in the rest of the seg-
ment. Also, the whole process of calculating and applying the ro-
tations to each segment could be re-written as a vertex shader pro-
gram to make use of possible hardware accelerations.

Only the effects of wind and gravity are currently accounted for.
Future developments will include investigation into the inclusion of
other external forces such as rain. Investigation will also be con-
ducted on the effects of single point contact forces such as pushing
the plant in the centre of the stem.

The positions of the leaves in the plant model are mainly man-
ually manipulated, although there is some randomisation in the
leaf orientations. Investigations will be conducted on provid-
ing a robust algorithm to produce realistically arranged plants.
Algorithms involving Lindenmayer-Systems will also be consid-
ered [Prusinkiewicz et al. 1988].

7 Conclusion

In this paper, we propose a method for realistic rendering and ani-
mating small plant models in real-time. To allow for a large range of
possible plant models which may include different species, we in-
clude a rigidity parameter. This rigidity parameter is used to deter-
mine the overall behaviour of the plant model. In this way, thin soft
plants can be modeled through a low rigidity parameter whereas a
stout rigid plant can be modeled through a high rigidity parameter.

The movements of the plant model are calculated through a sim-
ple system of force application. This allows for the animations

to achieve suitable real-time framerates as well as provide realis-
tic movements. Although these movements may not be physically
accurate, they are however, visually realistic.

This method for modeling plants will be suitable for animating
foliage in real-time applications. Future investigations will be con-
ducted to optimize and extend this method to be able to handle sev-
eral hundred models to create a vast realistically animated land-
scape of vegetation and foliage.

References

AITKEN, M., AND PRESTON, M. 2003. Grove: a production-optimised
foliage generator for “The Lord of the Rings: The Two Towers”. In Pro-
ceedings of the 1st international conference on Computer graphics and
interactive techniques in Australasia and South East Asia, ACM Press,
37–38.

CHOI, K.-J., AND KO, H.-S. 2002. Stable but responsive cloth. In Pro-
ceedings of the 29th annual conference on Computer graphics and inter-
active techniques, ACM Press, 604–611.

COX, S., 2003. Uvmapper. Available: http://www.uvmapper.com.

DEUSSEN, O., COLDITZ, C., STAMMINGER, M., AND DRETTAKIS, G.
2002. Interactive visualization of complex plant ecosystems. In Pro-
ceedings of the conference on Visualization ’02, 219–226.

GLANVILLE, R., 2003. Anim8or. Available: http://www.anim8or.com.

GUERRAZ, S., PERBET, F., RAULO, D., FAURE, F., AND CANI, M.-P.
2003. A procedural approach to animate interactive natural sceneries. In
CASA03.

LOWE, N., STRAUSS, J., S.YEATES, AND HOLDEN, E. 2002. Auslan
jam: A graphical sign language display system. In Proceedings of the
6th Annual Conference on Digital Image Computing Techniques and Ap-
plications, 98–103.

MILLER, G. S. P. 1988. The motion dynamics of snakes and worms. In
Proceedings of the 15th annual conference on Computer graphics and
interactive techniques, ACM Press, 169–173.

NOSER, H., RUDOLPH, S., AND STUCKI, P. 2001. Physics-enhanced
L-systems. In WSCG 2001 Conference Proceedings, V. Skala, Ed.

POWER, J. L., BRUSH, A. J. B., PRUSINKIEWICZ, P., AND SALESIN,
D. H. 1999. Interactive arrangement of botanical L-system models. In
Proceedings of the 1999 symposium on Interactive 3D graphics, ACM
Press, 175–182.

PRUSINKIEWICZ, P., AND MNDERMANN, L. 2001. The use of positional
information in the modeling of plants. In Proceedings of the 28th an-
nual conference on Computer graphics and interactive techniques, ACM
Press, 289–300.

PRUSINKIEWICZ, P., LINDENMAYER, A., AND HANAN, J. 1988. Devel-
opment models of herbaceous plants for computer imagery purposes. In
Proceedings of the 15th annual conference on Computer graphics and
interactive techniques, ACM Press, 141–150.

PRUSINKIEWICZ, P., HAMMEL, M. S., AND MJOLSNESS, E. 1993. An-
imation of plant development. In Proceedings of the 20th annual con-
ference on Computer graphics and interactive techniques, ACM Press,
351–360.

RAMAMOORTHI, R., AND BARR, A. 1997. Fast construction of accurate
quaternion splines. In Proceedings of the 24th Annual Conference on
Computer Graphics and Interactive Techniques, 287–292.

SAKAGUCHI, T., AND OHYA, J. 1999. Modeling and animation of botani-
cal trees for interactive virtual environments. In Proceedings of the ACM
symposium on Virtual reality software and technology, ACM Press, 139–
146.

WEBER, J., AND PENN, J. 1995. Creation and rendering of realistic trees.
In Proceedings of the 22nd annual conference on Computer graphics and
interactive techniques, ACM Press, 119–128.

188

Figure 13: Some sequentially selected screenshots from the restora-
tion and oscillation animation. The images go from left to right and
top to bottom.

WEISSTEIN, E. W., 1999. Quaternion – from mathworld. Available:
http://mathworld.wolfram.com/Quaternion.html.

Figure 14: Some sequentially selected screenshots from the ran-
domised wind animation. The images go from left to right and top
to bottom.

WEISSTEIN, E. W., 2003. Cantilever – from eric weisstein’s world of
physics. Available:
http://scienceworld.wolfram.com/physics/Cantilever.html.

189

